
Welcome to CS103!

Documents:

• Course Syllabus

Today:

• Course Overview

• Introduction to Set Theory

• The Limits of Computation



Zoom Etiquette 



Are there “laws of physics”
in computer science?



Introduction to Set Theory



Key Questions in CS103

What problems can you solve with a 
computer?

• Computability Theory

Why are some problems harder to solve 
than others?

• Complexity Theory

How can we be certain in our answers to 
these questions?

• Discrete Mathematics



Instructor

Ryan Smith (rsmith20@cs.Stanford.edu)

TAs

Sofía Dudas

Woody Wang 

Staff Email List: cs103-sum1920-staff@lists.stanford.edu



https://cs103.stanford.edu

Course Website

https://cs103.stanford.edu/


Prerequisite / Corequisite

CS106B
The problem sets throughout the quarter will have some 

programming assignments. We’ll also reference some 
concepts from CS106B/X, particularly recursion, throughout 

the quarter.
There aren't any math prerequisites for this 

course – high-school algebra should be 
enough!



Problem Set 0

• Your first assignment, Problem Set 0, 
goes out today. It’s due Thursday at 
11:59PM.

• You’ll need to get your development 
environment set up, though there’s no 
actual coding involved.

• It covers a few bits of adminstrivia that 
are important but easily covered offline.



Recommended Reading



Online Course Notes



Grading



Seven Problem Sets
Problem sets may be completed 

individually or in pairs.

Grading

Seven Problem Sets
Problem sets may be completed 

individually or in pairs.

50%



Midterm and Final
Each worth 25%*

Thursday, July 23rd and Friday, 
August 14th. 

Grading

Seven Problem Sets
Problem sets may be completed 

individually or in pairs.

50% 50%



Current Events

Life is stressful right now. 

Extraordinary events are happening.

If you need assistance, come and talk to us. 



How to Succeed in CS103



Proof-Based Mathematics

● Most high-school math classes – with the
exception of geometry – focus on calculation.

● CS103 focuses on argumentation.

● Your goal is to see why things are true, not
check that they work in a few cases.

● Be curious! Ask questions. Try things out on
your own. You'll learn this material best if you
engage with it and refuse to settle for a “good
enough” understanding.



Mental Traps to Avoid

● “Everyone else has been doing math since
before they were born and there is no way
I'll ever be as good as them.”

● “A small minority of people are math
geniuses and everyone else has no chance
at being good at math.”

● “Being good at math means being able to
instantly solve any math problem thrown at
you.”
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“A little slope makes up for a lot of y-intercept.”
- John Ousterhout   
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Pro Tip #1:

Never Confuse Experience for Talent



Pro Tip #2:

Have a Growth Mindset
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Mental Traps to Avoid

“Everyone else has been doing math since
before they were born and there is no way
I'll ever be as good as them.”

“A small minority of people are math
geniuses and everyone else has no chance
at being good at math.”

● “Being good at math means being able to
instantly solve any math problem thrown at
you.”



My Advice

• Question everything!

• Attend lecture.

• Study strategically and 
intentionally.

• Stick with it, but know when 
to get help.



We've got a big journey ahead of us.

Let's get started!



“The chemical elements”
“Cute animals”

“Cool people”

“US coins”

“All the computers on the
Stanford network”

“CS103 students”



A set is an unordered collection of distinct 
objects, which may be anything (including 

other sets).



A set is an unordered collection of distinct objects, 
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A set is an unordered collection of distinct objects, 
which may be anything (including other sets).

, , ,

Set notation: Curly braces with commas separating out the elements



Two sets are equal when they have exactly the 
same contents, ignoring order.

, , ,



Two sets are equal when they have exactly the 
same contents, ignoring order.
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Two sets are equal when they have exactly the 
same contents, ignoring order.

, , ,

, , ,

These are the same set!



Repeated elements in a set are ignored.



Repeated elements in a set are ignored.
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Repeated elements in a set are ignored.

,
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Repeated elements in a set are ignored.

,

, , , , ,

These are the same set!



Ø
We use this symbol to denote 

the empty set.
The empty set contains no 

elements.

=





Are these objects equal to one another?

1 1≟

This is a number.
This is a set.  It contains a number.



Are these objects equal to one another?

1 1≠

This is a number.
This is a set.  It contains a number.



Are these objects equal to one another?

Ø Ø≟

This set contains 
nothing at all.

This set has one element, which 
happens to be the empty set.



Are these objects equal to one another?

Ø Ø≠

This set contains nothing 
at all.

This set has one element, 
which happens to be the 

empty set.



Membership



Membership

, , ,



Membership

, , ,

Is          in this set?



Membership

, , ,

Is          in this set?

∈



Membership

, , ,

Is           in this set?

∈



Membership

, , ,

Is           in this set?

∉



Set Membership

Given a set S and an object x, we write

x ∈ S

if x is contained in S, and

x ∉ S

otherwise.

If x ∈ S, we say that x is an element of S.

Given any object x and any set S, either 
x ∈ S or x ∉ S.



Infinite Sets

• Some sets contain infinitely many elements!

• The set ℕ = { 0, 1, 2, 3, …} is the set of all the 
natural numbers.

• Some mathematicians don't include zero; in this 
class, assume that 0 is a natural number.

• The set ℤ = { …, -2, -1, 0, 1, 2, … } is the set of 
all the integers.

• Z is from German “Zahlen.”

• The set ℝ is the set of all real numbers.

• e ∈ ℝ, π ∈ ℝ, 4 ∈ ℝ, etc.



Describing Complex Sets

Here are some English descriptions of 
infinite sets:

“The set of all even natural numbers.”

“The set of all real numbers less than 137.”

“The set of all negative integers.”

To describe complex sets like these 
mathematically, we'll use set-builder 
notation.



{ n | n ∈ ℕ and n is even }

Even Natural Numbers
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{ n | n ∈ ℕ and n is even }

The set of all n

n is a natural number

Even Natural Numbers

where



{ n | n ∈ ℕ and n is even }

The set of all n

n is a natural number

and n is even

Even Natural Numbers

where



{ n | n ∈ ℕ and n is even }

The set of all n

n is a natural number

and n is even

Even Natural Numbers

where

{ 0, 2, 4, 6, 8, 10, 12, 14, 16, … }



Set Builder Notation

A set may be specified in set-builder 
notation:

{ x | some property x satisfies }

For example:

• { r | r ∈ ℝ and r < 137 }

• { n | n is an even natural number }

• { S | S is a set of US currency }

• { a | a is cute animal }

• { r ∈ ℝ | r < 137 }

• { n ∈ ℕ | n is odd }



Combining Sets
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Venn Diagrams

A B

A ∪ B
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3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Union

{ 1, 2, 3, 4, 5 }



Venn Diagrams
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Venn Diagrams

A B

A ∩ B

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Intersection

{ 3 }



Venn Diagrams

A B
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A = { 1, 2, 3 }
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Venn Diagrams

A B

A – B
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A = { 1, 2, 3 }
B = { 3, 4, 5 }

Difference

{ 1, 2 }



Venn Diagrams

A B

A \ B

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Difference

{ 1, 2 }



Venn Diagrams
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A = { 1, 2, 3 }
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Venn Diagrams

A B

A Δ B

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Symmetric
Difference

{ 1, 2, 4, 5 }



Venn Diagrams

A B

A Δ B



Venn Diagrams



Venn Diagrams for Three Sets



Venn Diagrams for Three Sets



Venn Diagrams for Four Sets

A

B

C

D

Question to ponder: why 
don't we just draw four 

circles?



Venn Diagrams for Five Sets



Venn Diagrams for Seven Sets

http://moebio.com/research/sevensets/

http://moebio.com/research/sevensets/


Subsets and Power Sets



Subsets

A set S is called a subset of a set T
(denoted S ⊆ T) if all elements of S are 
also elements of T.

Examples:

• { 1, 2, 3 } ⊆ { 1, 2, 3, 4 }

• { c, b } ⊆ { a, b, c, d }

• { H, He, Li } ⊆ { H, He, Li }

• ℕ ⊆ ℤ   (every natural number is an 
integer)

• ℤ ⊆ ℝ   (every integer is a real number)



Subsets and Elements
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Subsets and Elements
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2

Subsets and Elements

{2}
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2

Subsets and Elements

{2}

2

Set S

⊆ S
(Since 2 isn't a set.)



Subsets and Elements

We say that S ∈ T if, among the elements of T, 
one of them is exactly the object S.

We say that S ⊆ T if S is a set and every 
element of S is also an element of T. (S has to 
be a set for the statement S ⊆ T to be true.)

Although these concepts are similar, they are 
not the same! Not all elements of a set are 
subsets of that set and vice-versa.

We have a resource on the course website, the 
Guide to Elements and Subsets, that explores 
this in more depth.



What About the Empty Set?

A set S is called a subset of a set T
(denoted S ⊆ T) if all elements of S are 
also elements of T.

Are there any sets T where Ø ⊆ T?

Equivalently, is there a set T where the 
following statement is true?

“All elements of Ø are
also elements of T”

Yes! In fact, this statement is true for every
set T!



Vacuous Truth

A statement of the form

“All objects of type P
are also of type Q”

is called vacuously true if there are no objects of 
type P.

Vacuously true statements are true by definition. 
This is a convention used throughout mathematics.

Some examples:

All unicorns are pink.

All unicorns are blue.

Every element of Ø is also an element of T.



Subsets and Elements
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Subsets and Elements
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Subsets and Elements

{2}

2

Set S

Ø  ∉  S



Subsets and Elements

{2}

2

Set S

Ø  ∉  S



,,,,

,S =

℘(S) =

This is the power set of S, the set of all subsets of S. We write 
the power set of S as ℘(S).

Formally, ℘(S) = { T | T ⊆ S }.
(Do you see why?)

Ø



What is ℘(Ø)?

Answer: {Ø}

Remember that Ø ≠ {Ø}!



Cardinality



Cardinality

The cardinality of a set is the number of 
elements it contains.

If S is a set, we denote its cardinality by 
writing |S|.

Examples:

• |{38, 31}| = 2

• |{{a, b}, {c, d, e, f, g}, {h}}| = 3

• |{1, 2, 3, 3, 3, 3, 3}| = 3

• |{ n ∈ ℕ | n < 137 }| = 137



The Cardinality of ℕ

• What is |ℕ|?

• There are infinitely many natural 
numbers.

• |ℕ| can't be a natural number, since it's 
infinitely large.

• We need to introduce a new term.

• Let's define ℵ₀ = |ℕ|.

• ℵ₀ is pronounced “aleph-zero,” “aleph-
nought,” or “aleph-null.”



Consider the set

S = { n | n ∈ ℕ and n is even }

What is |S|?



How Big Are These Sets?

, , ,
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How Big Are These Sets?

, , ,

, ,,



Comparing Cardinalities

By definition, two sets have the same size if 
there is a way to pair their elements off 
without leaving any elements uncovered.

The intuition:

, , ,
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Comparing Cardinalities

By definition, two sets have the same size if 
there is a way to pair their elements off 
without leaving any elements uncovered.

The intuition:

, , ,

Everything has been paired 
up, and this one is all alone.,,
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S = { n | n ∈ ℕ and n is even }
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elements off without leaving 
any elements uncovered



Infinite Cardinalities

0 1 2 3 4 5 6 7 8 ...

0 2 4 6 8 ...

S = { n | n ∈ ℕ and n is even }

ℕ

S

Two sets have the same size if 
there is a way to pair their 

elements off without leaving 
any elements uncovered



Infinite Cardinalities

0 1 2 3 4 5 6 7 8 ...
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S = { n | n ∈ ℕ and n is even }
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Infinite Cardinalities

0 1 2 3 4 5 6 7 8 ...

0 2 4 6 8 10 12 14 16 ...

n ↔ 2n

S = { n | n ∈ ℕ and n is even }

|S| = |ℕ| = ℵ₀

ℕ

S
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Pair nonnegative integers with even natural numbers.
n ↔  -(n + 1) / 2 (if n is odd)
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Pair nonnegative integers with even natural numbers.
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Infinite Cardinalities

0 1 2 3 4 5 6 7 8 ...
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Pair nonnegative integers with even natural numbers.
n ↔  -(n + 1) / 2 (if n is odd)
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Infinite Cardinalities

0 1 2 3 4 5 6 7 8 ...

-3-2-1

ℕ

ℤ 0 1 2 3 4 ...-4

Pair nonnegative integers with even natural numbers.
Pair negative integers with odd natural numbers.

|ℕ| = |ℤ| = ℵ0



Important Question:

Do all infinite sets have
the same cardinality?
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,S =

℘(S) =

,

, ,

Ø

, , ,

, , , ,

, , ,

|S| < |℘(S)|



S = {a, b, c, d}

℘(S) = {

Ø,

{a}, {b}, {c}, {d},

{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d},

{a, b, c, d}

}

|S| < |℘(S)|



If |S| is infinite, what is the
relation between |S| and |℘(S)|?

Does |S| = |℘(S)|?



If |S| = |℘(S)|, we can pair up the elements 
of S and the elements of ℘(S) without 

leaving anything out.

What might this correspondence look like?
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If |S| = |℘(S)|, we can pair up the elements 
of S and the subsets of S without

leaving anything out.

What would that look like?
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The Diagonalization Proof

No matter how we pair up elements of S and subsets 
of S, the complemented diagonal won't appear in the 
table.

In row n, the nth element must be wrong.

No matter how we pair up elements of S and subsets 
of S, there is always at least one subset left over.

This result is Cantor's theorem: Every set is strictly 
smaller than its power set:

If S is a set, then |S| < |℘(S)|.    



Infinite Cardinalities

By Cantor's Theorem:

|ℕ| < |℘(ℕ)|

|℘(ℕ)| < |℘(℘(ℕ))|

|℘(℘(ℕ))| < |℘(℘(℘(ℕ)))|

|℘(℘(℘(ℕ)))| < |℘(℘(℘(℘(ℕ))))|

…     

Not all infinite sets have the same size!

There is no biggest infinity!

There are infinitely many infinities!



What does this have to do
with computation?



“The set of all computer programs”

“The set of all problems to solve”



Where We're Going

A string is a sequence of characters.

We're going to prove the following results:

• There are at most as many programs as 
there are strings.

• There are at least as many problems as 
there are sets of strings.

This leads to some incredible results – we'll 
see why in a minute!



Where We're Going

A string is a sequence of characters.

We're going to prove the following results:

• There are at most as many programs as 
there are strings.

• There are at least as many problems as 
there are sets of strings.

This leads to some incredible results – we'll 
see why in a minute!



Strings and Programs

The source code of a computer program is just 
a (long, structured, well-commented) string of 
text.

All programs are strings, but not all strings 
are necessarily programs.

All possible
programs

All possible
strings

|Programs| ≤ |Strings|



Where We're Going

A string is a sequence of characters.

We're going to prove the following results:

• There are at most as many programs as 
there are strings.

• There are at least as many problems as 
there are sets of strings.

This leads to some incredible results – we'll 
see why in a minute!



Where We're Going

A string is a sequence of characters.

We're going to prove the following results:

• There are at most as many programs as 
there are strings. ✓

• There are at least as many problems as 
there are sets of strings.

This leads to some incredible results – we'll 
see why in a minute!



Where We're Going

A string is a sequence of characters.

We're going to prove the following results:

• There are at most as many programs as 
there are strings. ✓

• There are at least as many problems as 
there are sets of strings.

This leads to some incredible results – we'll 
see why in a minute!



Strings and Problems

• There is a connection between the number 
of sets of strings and the number of 
problems to solve.

• Let S be any set of strings. This set S
gives rise to a problem to solve:

Given a string w, determine whether w ∈ S.



Strings and Problems

Given a string w, determine whether w ∈ S.

Suppose that S is the set

S = { "a", "b", "c", …, "z" }

From this set S, we get this problem:

Given a string w, determine whether
w is a single lower-case English letter.



Strings and Problems

Given a string w, determine whether w ∈ S.

Suppose that S is the set

S = { "0", "1", "2", …, "9", "10", "11", ... }

From this set S, we get this problem:

Given a string w, determine whether
w represents a natural number.



Strings and Problems

Given a string w, determine whether w ∈ S.

Suppose that S is the set

S = { p | p is a legal C++ program }

From this set S, we get this problem:

Given a string w, determine whether
w is a legal C++ program.



Strings and Problems

Every set of strings gives rise to a unique 
problem to solve.

Other problems exist as well.

Problems
formed from

sets of strings

All possible
problems

|Sets of Strings| ≤ |Problems|



Where We're Going

A string is a sequence of characters.

We're going to prove the following results:

• There are at most as many programs as 
there are strings. ✓

• There are at least as many problems as 
there are sets of strings.

This leads to some incredible results – we'll 
see why in a minute!



Where We're Going

A string is a sequence of characters.

We're going to prove the following results:

• There are at most as many programs as 
there are strings. ✓

• There are at least as many problems as 
there are sets of strings. ✓

This leads to some incredible results – we'll 
see why in a minute!



Where We're Going

A string is a sequence of characters.

We're going to prove the following results:

• There are at most as many programs as 
there are strings. ✓

• There are at least as many problems as 
there are sets of strings. ✓

This leads to some incredible results – we'll 
see why in a minute!



Where We're Going

A string is a sequence of characters.

We're going to prove the following results:

• There are at most as many programs as 
there are strings. ✓

• There are at least as many problems as 
there are sets of strings. ✓

This leads to some incredible results – we'll 
see why in a minute! right now!



Every computer program is a string.

So, the number of programs is at most the 
number of strings.

From Cantor's Theorem, we know that there are 
more sets of strings than strings.

There are at least as many problems
as there are sets of strings.

|Programs| |Strings| |℘(Strings)| |Problems|≤ ≤<



|Programs| < |Problems|

Every computer program is a string.

So, the number of programs is at most the 
number of strings.

From Cantor's Theorem, we know that there are 
more sets of strings than strings.

There are at least as many problems
as there are sets of strings.



|Programs| < |Problems|

There are more problems to
solve than there are programs

to solve them.



It Gets Worse

Using more advanced set theory, we can 
show that there are infinitely more
problems than solutions.

In fact, if you pick a totally random 
problem, the probability that you can solve 
it is zero.

More troubling fact: We've just shown 
that some problems are impossible to solve 
with computers, but we don't know which
problems those are!



We need to develop a more nuanced 
understanding of computation.



Where We're Going

What makes a problem impossible to 
solve with computers?

• Is there a deep reason why certain 
problems can't be solved with computers, or 
is it completely arbitrary?

• How do you know when you're looking at an 
impossible problem?

• Are these real-world problems, or are they 
highly contrived?

How do we know that we're right?

• How can we back up our pictures with 
rigorous proofs?

• How do we build a mathematical framework 
for studying computation?



Recap
Introduction to Set Theory

• A set S is an unordered collection of unique objects.

• They have a cardinality, |S|, that can be finite or infinite. 

• The empty set, Ø, is the set of cardinality 0.

• We can use element of (x ∈ S) to describe membership in the 
set S.

• We can use the following operations to make new sets:

• Union: (A ∪ B)

• Intersection: (A ∩ B)

• Difference: (A \ B)

• Symmetric Difference: (A Δ B)

• Power Set: ℘(S)

• The cardinality of S is less than the cardinality of the power set 
of S.

• |S| < |℘(S)|

• To compare two sets, we can use the subset relation. (A ⊆ B)

• There are more problems than programs.



Next Time

Mathematical Proof

• What is a mathematical proof?

• How can we prove things with certainty?


